AD=AD70 597 MARYLAND UNIV COLLEGE PARK DEPT OF PHYSICS AND ASTRONOMY F/G6 20/9
INFLUENCE OF FINITE ION LARMOR RADIUS AND EQUILIBRIUM SELF ELEC=-=ETC(U) I

1975 R C DAVIDSONs H UHM NO0014=T5=C=0309 '
, UNCLASSIF IED NL ‘
| = |IIIIIIIIIIIIIIII|IIIIII|IIIII\IIIII\II|III|IIII|IIIIII|IIIIIIIIIII|IIIII I

END

DATE
FILMED

8-79

DoC




= Jag 2

Rl 1

o

L
i

22 flis mie

] ¢

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-
!




PRGNt e

é’w.&noz | |

INFLUENCE OF FINITE ION LARMOR RADIUS AND EQUILIBRIUM SELF

ELECTRIC FIELDS ON THE ION RESONANCE INSTABILITY

Hwan-sup Uhm
E\. Department of Physics and Astronomy
University of Maryland, College Park, Md., 20742

Ronald C. Davidson*
Division of Magnetic Fusion Energy
Energy Research and Development Administration, Washington, D. C. 20545

o)

o

)

e : 1975
o APPROVZID FOR PUELIC FELEASE
'EI: DISIRIBUTION UNLIMITED

%1

1 The influence of finite ion Larmor radius and equilibrium
self-electric fields on the ion resonance instability

in a nonneutral plasma column is examined; and a closed
algebraic dispersion relation for the complex eigenfrequency w
is obtained. It is shown that finite ion Larmor radius
effects can have a strong stabilizing influence for azimuthal
mode numbers 2>2, particularly when the equilibrium self-

electric field is sufficiently weak.
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I. INTRODUCTION

One of the most basic instabilities that characterizes a nonneutral
plasmal with both ion and electron components is the ion resonance
1nstability.2-5 In cylindrical geometry, the ion resonance instability
can be described as a two~rotating-stream 1nstability2 in which the
relative rotation between electrons and ions is produced by the
equilibrium self-electric field Eg(r)ér. Previous analyses of this
instability have been based on macroscopic cold-fluid modelsz-a
in which the ion and electron motion is assumed to be laminar. 1In
this paper, we investigate the influence of finite ion Larmor radius
and equilibrium self-electric field effects on the ion resonance
instability in a nonneutral plasma column with rectangular electron
and ion density profiles. The analysis is carried out within the
framework of a hybrid Vlasov-fluid model. The electrons are described
as a macroscopic, cold (Te»O) fluid immersed in a uniform axial
magnetic field Bo%z’ On the other hand, to allow for the possibility
of large ion orbits with thermal Larmor radius comparable to the
radius of the plasma column, we adopt a fully kinetic model for the
ions in which the ions are described by the Vlasov equation. An
important conclusion of the present analysis is that the growth rate
of the ion resonance instability exhibits a very sensitive dependence
on iLi/Rp, &:e/mie and f. (Here ;Li is the characteristic thermal ion
Larmor radius, Rp is the radius of the plasma column, &pe is the
electron plasma frequency, Wee is the electron cyclotron frequency,
and f-ng/ng is the fractional charge neutralization provided by the
positive ioms.)

For azimuthally symmetric electron equilibria (3/36=0 and 3/32z=0)
characterized by electron density ng(r) and mean velocity ¥2(§)- 2e(t)ée,
equilibrium force balance on an electron fluid element in the radial

02 0/.y.ov0
direction can be expressed as -n.vee(r)/r-etr(r) evee(t)ﬂolc. or
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equivalently w:-w w +w.w__=0, where wce-eBo/mec. we(r)-vge(r)/r, and wE(r)

cee Ece
is the angular Ox frequency defined by w --cEO/rB . For purposes
E ' 0

of analytic simplification in the stability analysis, we specialize
to the case of a sharp-boundary equilibrium in which the electroms
have a rectangular density profile, i.e.,

(1)

n.=const. , O<r<R_,
a0 (r) -{ 9 P

o » Rp<r<Rc ’
where r-Rc is the radial location of a grounded conducting wall.
For the ion equilibrium, we make the particular choice of distribution

function fg that also gives a rectangular density profile, i.e.,

£9=(fngm, /2m) 8(H,-u,Pe-T,)GCv,) 2

i

where Wys f, and ii are constants, Hl-mi(vi+v§)/2+e¢o(r) is the
perpendicular energy, Pe-mi(rve+r2wci/2) is the canonical angular

momentum, and G(vz) is the parallel velocity distribution

with normalization J dsz(vz) = 1. After some simple

-0

algebraic manipulations,6 it is straightforward to show that

the electron and ion density profiles precisely overlap with a common

a 2.2 2 2
radius Rp provided T, =myQ Rp/2, where m, is fon mass, Q =wpw =W W W s

and wci-eBO/mic. In the case of a sharp-boundary equilibrium, the
6

go*ko rotation frequency can be expressed as wE-Zﬂnoec(l-f)/Bo.

1I1. ELECTROSTATIC STABILITY PROPERTIES

In the stability analysis, flute perturbations with 3/9z=0 are

considered. For perturbations with azimuthal harmonic number £,

a perturbed quantity 6y(x,t) can be expressed as Gw(g,t)-@ (r)exp{i(L8-wt)},

where w is the complex eigenfrequency. In the electrostatic approxima-

tion with GE(K,t)--XG¢(§,t), the linearized Vlasov-fluid and Poisson

equations can be expressed a:6
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-1(u-zue)\‘rer- S iree-(e/me) (3/31)é(x) ,

Lo DV g+l  H(1/0) G AT) (2 ) IV, =(e/m) (/D) () 1

-1 (w0 YA +(1/7) (@ 3T) (ngver)af(u /r)ngir =0 » (3)
o -~
E (r,p)=(e/m V) @ /av,)fﬂ[& (r)ﬂ(‘”"“i)L‘M (r')exp{i2 (8'-8)-wwt}] ,

[(llr)(alar)(ralar)—lzlr2]$(r)--éﬂe(Jd3v?i-he) »

where the perturbation amplitudes eer’ Gee’ ﬁe and Ei refer to radial

velocity, azimuthal velocity, electron density, and ion distribution

function, respectively. Making use of Eqs. (1) and (3), and 3n2(r)/3r=

-nod(r-Rp), we obtain the eigenvalue equation

e —
R R Y —

l L 1 + _%L. ¢( ) &3 1 + u_);% &
r ar 2 ey 2 L)
o v
Ve e
26 (r) e ‘:'ie
T mele 2 6(r-Rp) (4)
e Vv
" |
0 i
2 2 (= of ]
8re 1 i {
- mg Jo dV_'.V_'.f:° dvz v——v—‘ [¢ (r)+ -2 )I] ’ ‘

where vi(r)-ﬁu -2 ) -Gn-lw ) =const., w (r)-4nn0e2/me-const., for f
0<r<Rp,and—m:e(r)-0 otherwise, and orbit integral I is defined in
Eq. (5).

.J It is evident that the perturbed electron contribution to the
right-hand side of Eq. (4) [the term proportional to G(r-Rp) in Eq.
(4)] 1is equal to zero except at the surface of the plasma column
(r-Rp). Moreover, it can be shown that Eq. (4) supports a class of

solutions in which the perturbed ion density [the term proportional

[d3v v1 af°/a y+++ in Eq. (4)] is also equal to zero except at

r-Rp. It then follows from the linearized Poisson equation (4)

that the electrostatic potential $(r) has the simple form $(r)'Ar2




inside the plasma column (0§r<RpL wvhere A is a c.astant. Making
use of the ion trajectories in equilibrium fields, it is readily
shown that the required orbit integral can be expressed as6
0
fet (§(r)/ (wy~)) "] I drexp(~1wt) [ (wy~w])exp(Lu; 1)

-0

(5)

-(mi-wI)exP(iw;r)]l ’

where mi--wci[lt(l+&wE/wci)1/2]/2. An important feature of Eq. (5)
is that the orbit integral 1 is independent of perpendicular energy
min/Z. This is a consequence of the particularly simple form of

$(r) within the plasma column. The right-hand side of Eq. (4) is equal to

zero except at the surface of the plasma column (r-Rp). Moreover, the eigen-

‘ function ;(r) satisfies the vacuum Poisson equation, r'l(a/ar)[raélar]-

(22/r2)$(r)-0, except at r-Rp. Therefore, the solution to Eq. (4)
can be expressed as $(r)-Arl for ()5:'<R.p and &(r)-Atz(l-RilerQ)/(l-Rzllngl)

for Rp<r§Rc. Note that ;(r) is continuous at r-Rp.

ﬁf | The dispersion relation that determines the complex eigenfrequency
w is obtained by multiplying Eq. (4) by r and integrating from Rp(l-e)

to Rp(l+e) with e+O+. This gives
‘:)2 2 2
1 pe + pi P r (w) ’

IR RO 200mt0) [(umtng)~(ugg-2u) ] 207

(6)

2

a2, 0 2 a2 2 H
where vi.Z'fi/mi T 4%y wpi-kﬂfnoe Imi, mpe-kwnoe /me, mce-eaolmec, and

+ -
wy=wy § 2 w—lwi wi-w

{(2-m)! - -
Bl w-lwi—m(m;;mi) w,-

Pz(w)'-1+
m=0




A striking feature of the present analysis is the fact that the required orbit
integral I [Eq. (5)] can be evaluated in closed form [Eq. (7)] for general

-~ 42 2
values of the paramefers rLi/Rp and (ZwPe/wce)(l-f). Moreover, the resulting

eigenvalue equation (4) for the perturbed electrostatic potential ¢(r) can be

solved exactly to give a closed algebraic dispersion relation [Eq. (6)]
for the complex eigenfrequency w. As expected, in the limit where

fLi/Rp*O, Eq. (6) reduces to the familiar cold-fluid dispersion relation

previously discussed in the literature.2’3

_ Equation (4) has been solved nuzerically for the complex eigen-
frequency w=wr+iy for a wide variety of plasma parameters.6 For

present purposes, we assume that the electron fluid is rotating in the

1/2

l -. - -
slow equilibrium mode™ with we=w, wcell (1 AmE/wce) 1/2, while the mean

equilibrium motion of an ion fluid element corresponds to the slow rotation

-2 ,.2.1/2
velocity defined by -wci[1-(1+4w2/wc1-4rLi/Rp)

analysis is restricted to nonneutral proton-electron plasmas (mi/me-1836),

]/2. The present

and the growth rate and real frequency are measured in units of

)1/2

the lower-hybrid frequency, =(w . Moreover, we assume

“Lr”Yee¥et
that Rp/RC-O.S. Stability boundaries in the parameter space (f, “ie/wie)
are illustrated in Figs. 1 and 2. 1In Fig. 1, the solid curves correspond
to the stability boundaries (y=0) obtained from Eq. (6) for fLi/Rpso,

and several values of azimuthal harmonic number . For a given

value of 2, the region of (f,&ge/wze) parameter space above the curve

corresponds to instability (y>0), whereas the region of parameter
space below the curve corresponds to stability (y=0). In the forbidden zomne

in Fig. 1, equilibrium is not allowed since the magnetic restoring
force on an electron fluid element is weaker than the repulsive space-

~2 2
charge force [Zmpe(l-f)>wce].

T L R e e
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In Fig. 2, the stability béundaries are illustrated for QLi/Rp-l.
Evidently, for such large value of ;Li/Rp’ the region of (f,ﬁgelmie)
parameter space corresponding to allowed equilibria becomes
increasingly limited by the equilibrium constraint6 that the pressure
gradient force on an ion fluid element be weaker than the confining
electric and magnetic forces (see the uppermost forbidden zone in
Fig. 2).

The dependence of stability properties on fractional charge

neutralization f is illustrated in Fig. 3, where the normalized

growth rate y/wLH is plotted versus f for a:e/m:e-0.00Z [Figs. 3(a)

and 3(b)] and aielwie-O.S [Fig. 3(c)], and several values of mode

number £. We also assume fLi/Rp-O in Fig. 3(a), and i/Rp-O.S in

o %
Figs. 3(b) and 3(c). Several features are noteworthy in Fig. 3.

First, the number of unstable modes increases rapidly as f is

increased. Second, for 2>2, the instability growth rate is significantly
reduced by finite ion Larmor radius effects, particularly when the

equilibrium self electric field is sufficiently weak. [For example,

compare Figs. 3(a) and 3(b) with f approaching unity]. Third, the
instability growth rate increases substantially with increasing plasma

density [Figs. 3(a) and 3(b)].

III. SUMMARY AND CONCLUSIONS i

Several important conclusions follow from the present analysis.
For example, the growth rate of the ion resonance instability exhibits i

a very sensitive dependence on ;Li/Rp’ &ie/w:e and f. Moreover,

finite ion Larmor radius effects can have a strong stabilizing
influence for mode numbers £¢>2 [see, for example, Figs. 3(a) and
3(b) ], particularly when the equilibrium self-electric field is weak

(ﬁ;e/w:e<<1 or f close to unity). For the fundamental mode (2=1),

however, stability properties are identical to those calculated




from a macroscopic two-fluid model, and the growth rate is unaffected

by the value of fLi/Rp' The detailed dependence of normalized

real frequency u /uyy on Ty /R, m:e/mie and £ will be given elsevhere.®
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i FIGURE CAPTIONS

Fig. 1 Stability boundaries [Eq. (6)] in the parameter space §

| ~2 2 A "
é (f,mpe/wce) for mi/me-1836, Rp/Rc-O.S, rLi/Rp 0, and

R 60 i s w st

several values of 2.

Fig. 2 Stability boundaries [Eq. (6)] in the parameter space

a2 2 ”, - a
(f,mpe/wce) for milme 1836, Rp/Rc 0.5, rLi/Rp-l.O, and

several values of 2.

1 Fig. 3 Plots of y/u , versus £ [Eq. (6)] for m,/m =1836, R /R =0.5.
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